2025-08-13
本論文では、最大200ページに及ぶ長い文書から特定の情報を探し出す能力を測定する新しいベンチマーク「Document Haystack」を提案します。このベンチマークは、文書内に意図的に埋め込まれたテキスト情報や画像情報(「針」)を、Vision Language Model(VLM)がどれだけ正確に見つけ出せるかを評価します。実験の結果、現在のVLMはテキストのみの文書では高い性能を発揮するものの、画像化された文書や、テキストと画像が混在する情報では性能が大幅に低下することが明らかになりました。これは、VLMの長文・マルチモーダル文書理解能力における今後の研究課題を示唆しています。
2025-08-08
本稿では、従来の推薦システムと大規模言語モデル(LLM)を組み合わせた ハイブリッドTop-k推薦システムを提案する。ユーザーを「アクティブユーザー」と 「弱ユーザー」に分類し、弱ユーザーにはLLMを用いて推薦精度の向上と 推薦の公平性確保を目指す。同時に、LLMの計算コストを抑制し実用化可能な 推薦モデルを実現した点が特徴である。