2025-08-08
本論文は、大規模言語モデル(LLM)における長文コンテキスト処理の効率性と性能向上を目的とし、クエリに基づいて動的に情報を補完する「クエリガイド型アクティベーションリフィル(ACRE)」手法を提案する。二層KVキャッシュとクエリガイド型リフィルを組み合わせることで、ネイティブのコンテキストウィンドウを超える長文処理を可能にし、ロングコンテキスト情報検索の実用性を大きく高めた。
2025-08-08
本論文では、コードレビューにおける修正に繋がる望ましいレビューコメント(DRC)を自動的に識別する新手法「Desiview」を提案します。Desiviewにより高品質なデータセットを構築し、LLaMAモデルをファインチューニングおよびアラインメントすることで、DRC生成能力が大幅に向上したことを実証しました。本手法はコードレビュー自動化やソフトウェア開発支援に大きく貢献することが期待されます。
2025-08-08
本稿では、従来の推薦システムと大規模言語モデル(LLM)を組み合わせた ハイブリッドTop-k推薦システムを提案する。ユーザーを「アクティブユーザー」と 「弱ユーザー」に分類し、弱ユーザーにはLLMを用いて推薦精度の向上と 推薦の公平性確保を目指す。同時に、LLMの計算コストを抑制し実用化可能な 推薦モデルを実現した点が特徴である。